Astronomers Discover One of The Biggest Structures Ever Seen in The Milky Way


Roughly 13.8 billion years ago, our Universe was born in a massive explosion that gave rise to the first subatomic particles and the laws of physics as we know them.

About 370,000 years later, hydrogen had formed, the building block of stars, which fuse hydrogen and helium in their interiors to create all the heavier elements. While hydrogen remains the most pervasive element in the Universe, it can be difficult to detect individual clouds of hydrogen gas in the interstellar medium (ISM).

 

This makes it difficult to research the early phases of star formation, which would offer clues about the evolution of galaxies and the cosmos.

An international team led by astronomers from the Max Planck Institute of Astronomy (MPIA) recently noticed a massive filament of atomic hydrogen gas in our galaxy. This structure, named ‘Maggie‘, is located about 55,000 light-years away (on the other side of the Milky Way) and is one of the longest structures ever observed in our galaxy.

(ESA/Gaia/DPAC/T. Müller/J. Syed/MPIA)

Above: The section of the Milky Way, as measured by ESA’s Gaia satellite (top). The box marks the location of the ‘Maggie’ filament and the false-color image of atomic hydrogen distribution (bottom), the red line indicating the ‘Maggie’ filament.

The study that describes their findings, which recently appeared in the journal Astronomy & Astrophysics, was led by Jonas Syed, a Ph.D. student at the MPIA.

He was joined by researchers from the University of Vienna, the Harvard-Smithsonian Center for Astrophysics (CfA), the Max Planck Institute for Radio Astronomy (MPIFR), the University of Calgary, the Universität Heidelberg, the Centre for Astrophysics and Planetary Science, the Argelander-Institute for Astronomy, the Indian Institute of Science, and NASA’s Jet Propulsion Laboratory (JPL).

 

The research is based on data obtained by the HI/OH/Recombination line survey of the Milky Way (THOR), an observation program that relies on the Karl G. Jansky Very Large Array (VLA) in New Mexico.

Using the VLA’s centimeter-wave radio dishes, this project studies molecular cloud formation, the conversion of atomic to molecular hydrogen, the galaxy’s magnetic field, and other questions related to the ISM and star formation.

The ultimate purpose is to determine how the two most-common hydrogen isotopes converge to create dense clouds that rise to new stars. The isotopes include atomic hydrogen (H), composed of one proton, one electron, and no neutrons, and molecular hydrogen (H2) – or Deuterium – is composed of one proton, one neutron, and one electron.

Only the latter condenses into relatively compact clouds that will develop frosty regions where new stars eventually emerge.

The process of how atomic hydrogen transitions to molecular hydrogen is still largely unknown, which made this extraordinarily long filament an especially exciting find.

Whereas the largest known clouds of molecular gas typically measure around 800 light-years in length, Maggie measures 3,900 light-years long and 130 light-years wide. As Syed explained in a recent MPIA press release:

“The location of this filament has contributed to…



Read More: Astronomers Discover One of The Biggest Structures Ever Seen in The Milky Way

Leave a comment

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Live News

Get more stuff like this
in your inbox

Subscribe to our mailing list and get interesting stuff and updates to your email inbox.

Thank you for subscribing.

Something went wrong.